
ETC1010: Introduction to Data AnalysisETC1010: Introduction to Data Analysis
Week 8, part BWeek 8, part B

Text analysis and linear models

Lecturer: Nicholas Tierney
Department of Econometrics and Business Statistics

 nicholas.tierney@monash.edu
May 2020

Recap
tidying up text
unnest_tokens
stop words - (I, am, be, the, this, what, we, myself)
sentiment analysis

2/57

Upcoming Assessment
Project
Practical Exam
Final Exam

3/57

Project
Complete ED quiz before Thursday
Focus on narrowing down some interesting questions and datasets

4/57

Practice Exams
Practice exams are up for the �nal exam and the practical exam

5/57

Overview
Tidy Text continued
Term Frequency
Inverse Document Frequency
More practice

6/57

What is a document about?
How do we measure the importance of a word to a
document in a collection of documents?
i.e a novel in a collection of novels or a review in a set of reviews...
We combine the following statistics:

Term frequency
Inverse document frequency

7/57

Term frequency
The raw frequency of a word in a document . It is a function of
the word and the document.

w d

tf (w, d) =
count of w in d

total count in d

8/57

Harry Potter books
Using data from Harry potter:
A tibble: 200 x 2
book text
<fct> <chr>
1 Philosopher's S… "THE BOY WHO LIVED Mr. and Mrs. Dursley, of number four, Priv
2 Philosopher's S… "THE VANISHING GLASS Nearly ten years had passed since the Du
3 Philosopher's S… "THE LETTERS FROM NO ONE The escape of the Brazilian boa cons
4 Philosopher's S… "THE KEEPER OF THE KEYS BOOM. They knocked again. Dudley jerk
5 Philosopher's S… "DIAGON ALLEY Harry woke early the next morning. Although he
6 Philosopher's S… "THE JOURNEY FROM PLATFORM NINE AND THREE-QUARTERS Harry's la
7 Philosopher's S… "THE SORTING HAT The door swung open at once. A tall, black-h
8 Philosopher's S… "THE POTIONS MASTER There, look.\" \"Where?\" \"Next to
9 Philosopher's S… "THE MIDNIGHT DUEL Harry had never believed he would meet a b
10 Philosopher's S… "HALLOWEEN Malfoy couldn't believe his eyes when he saw that
… with 190 more rows

9/57

book_words <- hp_books %>%
 unnest_tokens(word, text) %>%
 count(book, word, sort = TRUE)

book_words
A tibble: 67,881 x 3
book word n
<fct> <chr> <int>
1 Order of the Phoenix the 11740
2 Deathly Hallows the 10335
3 Goblet of Fire the 9305
4 Half-Blood Prince the 7508
5 Order of the Phoenix to 6518
6 Order of the Phoenix and 6189
7 Deathly Hallows and 5510
8 Order of the Phoenix of 5332
9 Prisoner of Azkaban the 4990
10 Goblet of Fire and 4959
… with 67,871 more rows

Harry Potter books
Unnest tokens, and use count to count up the words within each
book:

10/57

Term frequency
Let's calculate frequency of words for The Philosopher's Stone
stopwords_smart <- get_stopwords(source = "smart")

document <- book_words %>%
 anti_join(stopwords_smart) %>%
 filter(book == "Philosopher's Stone")
document
A tibble: 5,547 x 3
book word n
<fct> <chr> <int>
1 Philosopher's Stone harry 1213
2 Philosopher's Stone ron 410
3 Philosopher's Stone hagrid 336
4 Philosopher's Stone back 261
5 Philosopher's Stone hermione 257
6 Philosopher's Stone professor 181
7 Philosopher's Stone looked 169
8 Philosopher's Stone snape 145
9 Philosopher's Stone dumbledore 143

11/57

Term frequency
The term frequency for each word is the number of times that word
occurs divided by the total number of words in the document.
tbl_tf <- document %>%
 mutate(tf = n / sum(n))

tbl_tf %>%
 arrange(desc(tf))
A tibble: 5,547 x 4
book word n tf
<fct> <chr> <int> <dbl>
1 Philosopher's Stone harry 1213 0.0385
2 Philosopher's Stone ron 410 0.0130
3 Philosopher's Stone hagrid 336 0.0107
4 Philosopher's Stone back 261 0.00829
5 Philosopher's Stone hermione 257 0.00817
6 Philosopher's Stone professor 181 0.00575
7 Philosopher's Stone looked 169 0.00537
8 Philosopher's Stone snape 145 0.00461
9 Philosopher's Stone dumbledore 143 0.00454 12/57

Inverse-document frequency
We can instead look at a term's inverse document frequency (idf),
which:

Decreases weight for commonly used words, while
Increasing weight for those words not used much in a collection of
documents.

This effectively tells us how common or rare a word is accross a
collection of documents.
It is a function of a word , and the collection of documents .w 

idf (w, ) = log()
Number of 

Number of documents containing w

13/57

Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents
How many documents contain the word, "the". (All 20 contain "the")



idf (w = 20,  = 20) = log()
20

20

idf (w = 20,  = 20) = log (1)

idf (w = 20,  = 20) = 0

14/57

Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents
How many documents contain the word, "Deciduous". (Only 1
contains the word "Deciduous")



idf (w = 1,  = 20) = log()
20

1

idf (w = 1,  = 20) = log (20)

idf (w = 1,  = 20) = 2.995

15/57

Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents
How many documents contain the word, "Banana". (10 contain the
word "Banana")



idf (w = 10,  = 20) = log()
20

10

idf (w = 10,  = 20) = log (2)

idf (w = 1,  = 2) = 0.693

16/57

Inverse document frequency
When it is higher: Word is not used much in a collection of
documents

E.g., 1 document uses "deciduous"
When it is lower: Word is not commonly used much in a collection of
documents

E.g., all documents use "the", not as many use "bananas"

17/57

Inverse document frequency
For the Harry Potter books, we could compute this in a somewhat
roundabout as follows:
tbl_idf <- book_words %>%
 anti_join(stopwords_smart) %>%
 mutate(collection_size = n_distinct(book)) %>%
 group_by(collection_size, word) %>%
 summarise(times_word_used = n_distinct(book)) %>%
 mutate(freq = collection_size / times_word_used,
 idf = log(freq))
arrange(tbl_idf, idf)
A tibble: 23,945 x 5
Groups: collection_size [1]
collection_size word times_word_used freq idf
<int> <chr> <int> <dbl> <dbl>
1 7 absolutely 7 1 0
2 7 absurd 7 1 0
3 7 accept 7 1 0
4 7 accepted 7 1 0
5 7 accident 7 1 0 18/57

Putting it together
term frequency, inverse document frequency
Multiply tf and idf together. This is a function of a word , a
document , and the collection of documents :

A High value of means a word has a high frequency within a
document but is quite rare over all documents.
Likewise if a word occurs in a lot of documents idf will be close to
zero, so will be small.

w
d 

t df (w, d, ) = tf (w, d) × idf (w, )fi

tf _idf

tf _idf

19/57

TF IDF summary
TF IDF helps us �nd those words that are important in the content of
documents
It does this by increasing the weight of words not used very much in
a collection, since the IDF is higher when a word isn't used often.
So a higher TF IDF means the word is more important if it is both
used a lot (has a high term frequency), and is uncommon (higher
IDF).
And a lower TF IDF means the word is less important, since it might
be really common (high term frequency), but be really common
(lower IDF).

20/57

Putting it together, tf-idf
We can calculate TF IDF using bind_tf_idf()
book_words_counts <- book_words %>%
 anti_join(stopwords_smart) %>%
 bind_tf_idf(term = word, document = book, n = n)

book_words_counts
A tibble: 64,582 x 6
book word n tf idf tf_idf
<fct> <chr> <int> <dbl> <dbl> <dbl>
1 Order of the Phoenix harry 3730 0.0352 0 0
2 Goblet of Fire harry 2936 0.0369 0 0
3 Deathly Hallows harry 2770 0.0345 0 0
4 Half-Blood Prince harry 2581 0.0374 0 0
5 Prisoner of Azkaban harry 1824 0.0408 0 0
6 Chamber of Secrets harry 1503 0.0409 0 0
7 Order of the Phoenix hermione 1220 0.0115 0 0
8 Philosopher's Stone harry 1213 0.0385 0 0
9 Order of the Phoenix ron 1189 0.0112 0 0
10 Deathly Hallows hermione 1077 0.0134 0 0 21/57

What words were important to the books?

22/57

Your Turn
Explore uncommon / important words in Jane Austen's books!

Complete "8b-jane-austen-tf-idf.Rmd"

23/57

Sentiment analysis
Sentiment analysis tags words or phrases with an emotion, and
summarises these, often as the positive or negative state, over a
body of text.

24/57

Sentiment analysis: examples
Examining effect of emotional state in twitter posts
Determining public reactions to government policy, or new product
releases
Trying to make money in the stock market by modeling social media
posts on listed companies
Evaluating product reviews on Amazon, restaurants on zomato, or
travel options on TripAdvisor

25/57

Lexicons
The tidytext package has a lexicon of sentiments, based on four
major sources: AFINN, bing, Loughran, nrc

26/57

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm

emotion
What emotion do these words elicit in you?

summer
hot chips
hug
lose
stolen
smile

27/57

Different sources of sentiment
The nrc lexicon categorizes words in a binary fashion ("yes"/"no")
into categories of positive, negative, anger, anticipation, disgust, fear,
joy, sadness, surprise, and trust.

The bing lexicon categorizes words in a binary fashion into positive
and negative categories.

The AFINN lexicon assigns words with a score that runs between -5
and 5, with negative scores indicating negative sentiment and
positive scores indicating positive sentiment.

28/57

Different sources of sentiment
get_sentiments("afinn")
A tibble: 2,477 x 2
word value
<chr> <dbl>
1 abandon -2
2 abandoned -2
3 abandons -2
4 abducted -2
5 abduction -2
6 abductions -2
7 abhor -3
8 abhorred -3
9 abhorrent -3
10 abhors -3
… with 2,467 more rows

29/57

Sentiment analysis
Once you have a bag of words, you need to join the sentiments
dictionary to the words data.

Particularly the lexicon nrc has multiple tags per word, so you may
need to use an "inner_join".

inner_join() returns all rows from x where there are matching
values in y, and all columns from x and y.
If there are multiple matches between x and y, all combination of the
matches are returned.

30/57

Exploring sentiment in Harry Potter
book_words
A tibble: 67,881 x 3
book word n
<fct> <chr> <int>
1 Order of the Phoenix the 11740
2 Deathly Hallows the 10335
3 Goblet of Fire the 9305
4 Half-Blood Prince the 7508
5 Order of the Phoenix to 6518
6 Order of the Phoenix and 6189
7 Deathly Hallows and 5510
8 Order of the Phoenix of 5332
9 Prisoner of Azkaban the 4990
10 Goblet of Fire and 4959
… with 67,871 more rows

31/57

Count joyful words in "Chamber of Secrets"
nrc_joy <- get_sentiments("nrc") %>%
 filter(sentiment == "joy")

book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(nrc_joy) %>%
 arrange(desc(n))
A tibble: 205 x 4
book word n sentiment
<fct> <chr> <int> <chr>
1 Chamber of Secrets good 85 joy
2 Chamber of Secrets diary 64 joy
3 Chamber of Secrets found 53 joy
4 Chamber of Secrets smile 29 joy
5 Chamber of Secrets white 25 joy
6 Chamber of Secrets green 24 joy
7 Chamber of Secrets feeling 21 joy
8 Chamber of Secrets kind 18 joy
9 Chamber of Secrets magical 18 joy
10 Chamber of Secrets pleased 18 joy 32/57

Count joyful words in "Chamber of Secrets"
A tibble: 6 x 4
book word n sentiment
<fct> <chr> <int> <chr>
1 Chamber of Secrets good 85 joy
2 Chamber of Secrets diary 64 joy
3 Chamber of Secrets found 53 joy
4 Chamber of Secrets smile 29 joy
5 Chamber of Secrets white 25 joy
6 Chamber of Secrets green 24 joy

"Good" is the most common joyful word, followed by "diary", "found",
and "smile".
These make sense ... except for "diary", and "found",
and ... "white" and "green" ?

33/57

Your turn: go to
rstudio.cloud

Go to "8b-jane-austen-sentiment.Rmd"
What are the most common "anger" words used in Emma?
What are the most common "surprise" words used in Emma?

34/57

Comparing lexicons
All of the lexicons have a measure of positive or negative.
We can tag the words in Emma by each lexicon, and see if they
agree.

nrc_pn <- get_sentiments("nrc") %>%
 filter(sentiment %in% c("positive",
 "negative"))

secrets_nrc <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(nrc_pn)

secrets_bing <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(get_sentiments("bing"))

secrets_afinn <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(get_sentiments("afinn"))

35/57

Comparing lexicons
secrets_nrc
A tibble: 1,291 x 4
book word n sentiment
<fct> <chr> <int> <chr>
1 Chamber of Secrets harry 1503 negative
2 Chamber of Secrets professor 190 positive
3 Chamber of Secrets sir 88 positive
4 Chamber of Secrets good 85 positive
5 Chamber of Secrets diary 64 positive
6 Chamber of Secrets black 61 negative
7 Chamber of Secrets found 53 positive
8 Chamber of Secrets small 51 negative
9 Chamber of Secrets boy 49 negative
10 Chamber of Secrets wizard 45 positive
… with 1,281 more rows

36/57

Comparing lexicons
secrets_afinn
A tibble: 768 x 4
book word n value
<fct> <chr> <int> <dbl>
1 Chamber of Secrets no 221 -1
2 Chamber of Secrets like 184 2
3 Chamber of Secrets good 85 3
4 Chamber of Secrets great 67 3
5 Chamber of Secrets want 66 1
6 Chamber of Secrets better 54 2
7 Chamber of Secrets hard 47 -1
8 Chamber of Secrets reached 43 1
9 Chamber of Secrets stop 42 -1
10 Chamber of Secrets help 40 2
… with 758 more rows

37/57

Comparing lexicons
secrets_nrc %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 4524 0.609
2 positive 2904 0.391

secrets_bing %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 2970 0.582
2 positive 2133 0.418

38/57

Comparing lexicons
secrets_afinn %>%
 mutate(sentiment = ifelse(value > 0,
 "positive",
 "negative")) %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 2273 0.531
2 positive 2010 0.469

39/57

Your turn:
Continue along with "8b-jane-austen-sentiment.Rmd"

Using your choice of lexicon (nrc, bing, or a�nn) compute the
proportion of positive words in each of Austen's books.
Which book is the most positive? negative?

40/57

Example: Simpsons
Data from the popular animated TV series, The Simpsons, has been
made available on kaggle.

simpsons_script_lines.csv: Contains the text spoken during
each episode (including details about which character said it and
where)

simpsons_characters.csv: Contains character names and a
character id

41/57

https://www.kaggle.com/wcukierski/the-simpsons-by-the-data/data

The Simpsons
scripts <- read_csv("data/simpsons_script_lines.csv")
chs <- read_csv("data/simpsons_characters.csv")
sc <- left_join(scripts, chs, by = c("character_id" = "id"))

sc
A tibble: 157,462 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho… 848000 TRUE 464
2 9550 32 210 Lisa Si… 856000 TRUE 9
3 9551 32 211 Miss Ho… 856000 TRUE 464
4 9552 32 212 Lisa Si… 864000 TRUE 9
5 9553 32 213 Edna Kr… 864000 TRUE 40
6 9554 32 214 Martin … 877000 TRUE 38
7 9555 32 215 Edna Kr… 881000 TRUE 40
8 9556 32 216 Bart Si… 882000 TRUE 8
9 9557 32 217 (Apartm… 889000 FALSE NA
10 9558 32 218 Lisa Si… 889000 TRUE 9
… with 157,452 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>, 42/57

count the number of times a character speaks
sc %>% count(name, sort = TRUE)
A tibble: 6,143 x 2
name n
<chr> <int>
1 Homer Simpson 29945
2 <NA> 19661
3 Marge Simpson 14192
4 Bart Simpson 13894
5 Lisa Simpson 11573
6 C. Montgomery Burns 3196
7 Moe Szyslak 2853
8 Seymour Skinner 2437
9 Ned Flanders 2139
10 Grampa Simpson 1952
… with 6,133 more rows

43/57

missing name?
sc %>% filter(is.na(name))
A tibble: 19,661 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9557 32 217 (Apartm… 889000 FALSE NA
2 9565 32 225 (Spring… 918000 FALSE NA
3 75766 263 106 (Moe's … 497000 FALSE NA
4 9583 32 243 (Train … 960000 FALSE NA
5 9604 32 264 (Simpso… 1070000 FALSE NA
6 9655 33 0 (Simpso… 84000 FALSE NA
7 9685 33 30 (Simpso… 177000 FALSE NA
8 9686 33 31 (Simpso… 177000 FALSE NA
9 9727 33 72 (Simpso… 349000 FALSE NA
10 9729 33 74 (Simpso… 355000 FALSE NA
… with 19,651 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>,
normalized_text <chr>, word_count <chr>, name <chr>, normalized_name <chr>,
gender <chr>

44/57

Simpsons Pre-process the text
sc %>%
 unnest_tokens(output = word,
 input = spoken_words)
A tibble: 1,355,370 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho… 848000 TRUE 464
2 9549 32 209 Miss Ho… 848000 TRUE 464
3 9549 32 209 Miss Ho… 848000 TRUE 464
4 9549 32 209 Miss Ho… 848000 TRUE 464
5 9549 32 209 Miss Ho… 848000 TRUE 464
6 9549 32 209 Miss Ho… 848000 TRUE 464
7 9549 32 209 Miss Ho… 848000 TRUE 464
8 9549 32 209 Miss Ho… 848000 TRUE 464
9 9549 32 209 Miss Ho… 848000 TRUE 464
10 9549 32 209 Miss Ho… 848000 TRUE 464
… with 1,355,360 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr>

45/57

Simpsons Pre-process the text
sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words)
A tibble: 511,869 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho… 848000 TRUE 464
2 9549 32 209 Miss Ho… 848000 TRUE 464
3 9549 32 209 Miss Ho… 848000 TRUE 464
4 9549 32 209 Miss Ho… 848000 TRUE 464
5 9550 32 210 Lisa Si… 856000 TRUE 9
6 9551 32 211 Miss Ho… 856000 TRUE 464
7 9551 32 211 Miss Ho… 856000 TRUE 464
8 9551 32 211 Miss Ho… 856000 TRUE 464
9 9551 32 211 Miss Ho… 856000 TRUE 464
10 9551 32 211 Miss Ho… 856000 TRUE 464
… with 511,859 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr> 46/57

Simpsons Pre-process the text
sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(word, sort = TRUE) %>%
 filter(!is.na(word))
A tibble: 41,891 x 2
word n
<chr> <int>
1 hey 4366
2 homer 4328
3 bart 3434
4 uh 3090
5 yeah 2997
6 simpson 2846
7 marge 2786
8 gonna 2639
9 dad 2521
10 time 2508
… with 41,881 more rows 47/57

Simpsons Pre-process the text
sc_top_20 <- sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(word, sort = TRUE) %>%
 filter(!is.na(word)) %>%
 mutate(word = factor(word,
 levels = rev(unique(word)))) %>%
 top_n(20)

48/57

Simpsons plot most common words
ggplot(sc_top_20,
 aes(x = word,
 y = n)) +
 geom_col() +
 labs(x = '',
 y = 'count',
 title = 'Top 20 words') +
 coord_flip() +
 theme_bw()

49/57

Tag the words with sentiments
Using AFINN words will be tagged on a negative to positive scale of
-1 to 5.
sc_word <- sc %>%
 unnest_tokens(output = word, input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(name, word) %>%
 filter(!is.na(word))

sc_word
A tibble: 220,838 x 3
name word n
<chr> <chr> <int>
1 '30s Reporter burns 1
2 '30s Reporter kinda 1
3 '30s Reporter sensational 1
4 1-Year-Old Bart beer 1
5 1-Year-Old Bart daddy 5
6 1-Year-Old Bart fat 1
7 1-Year-Old Bart moustache 1 50/57

Tag the words with sentiments
sc_s <- sc_word %>%
 inner_join(get_sentiments("afinn"), by = "word")

sc_s
A tibble: 26,688 x 4
name word n value
<chr> <chr> <int> <dbl>
1 1-Year-Old Bart nice 1 3
2 10-Year-Old Homer chance 1 2
3 10-Year-Old Homer cool 1 1
4 10-Year-Old Homer die 1 -3
5 10-Year-Old Homer died 1 -3
6 10-Year-Old Homer dreams 1 1
7 10-Year-Old Homer happy 1 3
8 10-Year-Old Homer heaven 1 2
9 10-Year-Old Homer hell 1 -4
10 10-Year-Old Homer kiss 1 2
… with 26,678 more rows

51/57

Examine Simpsons characters
sc_s %>%
 group_by(name) %>%
 summarise(m = mean(value)) %>%
 arrange(desc(m))
A tibble: 3,409 x 2
name m
<chr> <dbl>
1 2nd Sportscaster 4
2 4-h Judge 4
3 7-Year-Old Brockman 4
4 ALEPPO 4
5 All Kids 4
6 Applicants 4
7 Australian 4
8 Bill James 4
9 Canadian Player 4
10 Carl Kasell 4
… with 3,399 more rows

52/57

Examine Simpsons characters: Focus characters.
keep <- sc %>% count(name,
 sort=TRUE) %>%
 filter(!is.na(name)) %>%
 filter(n > 999)

sc_s %>%
 filter(name %in% keep$name) %>%
 group_by(name) %>%
 summarise(m = mean(value)) %>%
 arrange(m)
A tibble: 16 x 2
name m
<chr> <dbl>
1 Nelson Muntz -0.519
2 Grampa Simpson -0.429
3 Homer Simpson -0.428
4 Bart Simpson -0.391
5 Chief Wiggum -0.388
6 Lisa Simpson -0.388
7 Marge Simpson -0.344 53/57

Your turn: "8b-
simpsons.Rmd"
1. Bart Simpson is featured at various ages. How has the sentiment

of his words changed over his life?
2. Repeat the sentiment analysis with the NRC lexicon. What

character is the most "angry"? "joyful"?

54/57

Extension: Explore Harry
Potter

I've included the harry potter data the code from the harry potter part
of the lecture in "8b-harry-potter.Rmd", if you want to have a play
around, I've got a few questions there.

55/57

Further extension
Text Mining with R has an example comparing historical physics
textbooks: Discourse on Floating Bodies by Galileo Galilei, Treatise on
Light by Christiaan Huygens, Experiments with Alternate Currents of
High Potential and High Frequency by Nikola Tesla, and Relativity: The
Special and General Theory by Albert Einstein. All are available on the
Gutenberg project.
Work your way through the comparison of physics books. It is
section 3.4.

56/57

https://www.tidytextmining.com/tfidf.html#a-corpus-of-physics-texts

Thanks
Dr. Mine Çetinkaya-Rundel
Dr. Julia Silge: https://github.com/juliasilge/tidytext-tutorial and
https://juliasilge.com/blog/animal-crossing/
Dr. Julia Silge and Dr. David Robinson:
https://www.tidytextmining.com/

57/57

https://github.com/juliasilge/tidytext-tutorial
https://juliasilge.com/blog/animal-crossing/
https://www.tidytextmining.com/

