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Recap
tidying up text
unnest_tokens
stop words - (I, am, be, the, this, what, we, myself)
sentiment analysis
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Upcoming Assessment
Project
Practical Exam
Final Exam
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Project
Complete ED quiz before Thursday
Focus on narrowing down some interesting questions and datasets
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Practice Exams
Practice exams are up for the �nal exam and the practical exam
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Overview
Tidy Text continued
Term Frequency
Inverse Document Frequency
More practice
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What is a document about?
How do we measure the importance of a word to a
document in a collection of documents?
i.e a novel in a collection of novels or a review in a set of reviews...
We combine the following statistics:

Term frequency
Inverse document frequency
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Term frequency
The raw frequency of a word  in a document . It is a function of
the word and the document.

w d

tf (w, d) =
count of w in d

total count in d
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Harry Potter books
Using data from Harry potter:
## # A tibble: 200 x 2
##    book             text                                                           
##    <fct>            <chr>                                                          
##  1 Philosopher's S… "THE BOY WHO LIVED  Mr. and Mrs. Dursley, of number four, Priv
##  2 Philosopher's S… "THE VANISHING GLASS  Nearly ten years had passed since the Du
##  3 Philosopher's S… "THE LETTERS FROM NO ONE  The escape of the Brazilian boa cons
##  4 Philosopher's S… "THE KEEPER OF THE KEYS  BOOM. They knocked again. Dudley jerk
##  5 Philosopher's S… "DIAGON ALLEY  Harry woke early the next morning. Although he 
##  6 Philosopher's S… "THE JOURNEY FROM PLATFORM NINE AND THREE-QUARTERS  Harry's la
##  7 Philosopher's S… "THE SORTING HAT  The door swung open at once. A tall, black-h
##  8 Philosopher's S… "THE POTIONS MASTER  There, look.\"  \"Where?\"  \"Next to 
##  9 Philosopher's S… "THE MIDNIGHT DUEL  Harry had never believed he would meet a b
## 10 Philosopher's S… "HALLOWEEN  Malfoy couldn't believe his eyes when he saw that 
## # … with 190 more rows
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book_words <- hp_books %>% 
  unnest_tokens(word, text) %>% 
  count(book, word, sort = TRUE)

book_words
## # A tibble: 67,881 x 3
##    book                 word      n
##    <fct>                <chr> <int>
##  1 Order of the Phoenix the   11740
##  2 Deathly Hallows      the   10335
##  3 Goblet of Fire       the    9305
##  4 Half-Blood Prince    the    7508
##  5 Order of the Phoenix to     6518
##  6 Order of the Phoenix and    6189
##  7 Deathly Hallows      and    5510
##  8 Order of the Phoenix of     5332
##  9 Prisoner of Azkaban  the    4990
## 10 Goblet of Fire       and    4959
## # … with 67,871 more rows

Harry Potter books
Unnest tokens, and use count to count up the words within each
book:
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Term frequency
Let's calculate frequency of words for The Philosopher's Stone
stopwords_smart <- get_stopwords(source = "smart")

document <- book_words %>% 
  anti_join(stopwords_smart) %>% 
  filter(book == "Philosopher's Stone") 
document
## # A tibble: 5,547 x 3
##    book                word           n
##    <fct>               <chr>      <int>
##  1 Philosopher's Stone harry       1213
##  2 Philosopher's Stone ron          410
##  3 Philosopher's Stone hagrid       336
##  4 Philosopher's Stone back         261
##  5 Philosopher's Stone hermione     257
##  6 Philosopher's Stone professor    181
##  7 Philosopher's Stone looked       169
##  8 Philosopher's Stone snape        145
##  9 Philosopher's Stone dumbledore   143
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Term frequency
The term frequency for each word is the number of times that word
occurs divided by the total number of words in the document.
tbl_tf <- document %>% 
  mutate(tf = n / sum(n))

tbl_tf %>% 
  arrange(desc(tf))
## # A tibble: 5,547 x 4
##    book                word           n      tf
##    <fct>               <chr>      <int>   <dbl>
##  1 Philosopher's Stone harry       1213 0.0385 
##  2 Philosopher's Stone ron          410 0.0130 
##  3 Philosopher's Stone hagrid       336 0.0107 
##  4 Philosopher's Stone back         261 0.00829
##  5 Philosopher's Stone hermione     257 0.00817
##  6 Philosopher's Stone professor    181 0.00575
##  7 Philosopher's Stone looked       169 0.00537
##  8 Philosopher's Stone snape        145 0.00461
##  9 Philosopher's Stone dumbledore   143 0.00454 12/57



Inverse-document frequency
We can instead look at a term's inverse document frequency (idf),
which:

Decreases weight for commonly used words, while
Increasing weight for those words not used much in a collection of
documents.

This effectively tells us how common or rare a word is accross a
collection of documents.
It is a function of a word , and the collection of documents .w 

idf (w, ) = log( )
Number of 

Number of documents containing w
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Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents 
How many documents contain the word, "the". (All 20 contain "the")



idf (w = 20,  = 20) = log( )
20

20

idf (w = 20,  = 20) = log (1)

idf (w = 20,  = 20) = 0
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Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents 
How many documents contain the word, "Deciduous". (Only 1
contains the word "Deciduous")



idf (w = 1,  = 20) = log( )
20

1

idf (w = 1,  = 20) = log (20)

idf (w = 1,  = 20) = 2.995
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Inverse-document frequency: Example
Let's say that we had 20 documents:

Out of 20 documents 
How many documents contain the word, "Banana". (10 contain the
word "Banana")



idf (w = 10,  = 20) = log( )
20

10

idf (w = 10,  = 20) = log (2)

idf (w = 1,  = 2) = 0.693
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Inverse document frequency
When it is higher: Word is not used much in a collection of
documents

E.g., 1 document uses "deciduous"
When it is lower: Word is not commonly used much in a collection of
documents

E.g., all documents use "the", not as many use "bananas"
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Inverse document frequency
For the Harry Potter books, we could compute this in a somewhat
roundabout as follows:
tbl_idf <- book_words %>% 
    anti_join(stopwords_smart) %>%
    mutate(collection_size = n_distinct(book)) %>% 
    group_by(collection_size, word) %>% 
    summarise(times_word_used = n_distinct(book)) %>% 
    mutate(freq = collection_size / times_word_used,
           idf = log(freq)) 
arrange(tbl_idf, idf)
## # A tibble: 23,945 x 5
## # Groups:   collection_size [1]
##    collection_size word         times_word_used  freq   idf
##              <int> <chr>                  <int> <dbl> <dbl>
##  1               7 absolutely                 7     1     0
##  2               7 absurd                     7     1     0
##  3               7 accept                     7     1     0
##  4               7 accepted                   7     1     0
##  5               7 accident                   7     1     0 18/57



Putting it together
term frequency, inverse document frequency
Multiply tf and idf together. This is a function of a word , a
document , and the collection of documents :

A High value of  means a word has a high frequency within a
document but is quite rare over all documents.
Likewise if a word occurs in a lot of documents idf will be close to
zero, so  will be small.

w
d 

t df (w, d, ) = tf (w, d) × idf (w, )fi

tf _idf

tf _idf
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TF IDF summary
TF IDF helps us �nd those words that are important in the content of
documents
It does this by increasing the weight of words not used very much in
a collection, since the IDF is higher when a word isn't used often.
So a higher TF IDF means the word is more important if it is both
used a lot (has a high term frequency), and is uncommon (higher
IDF).
And a lower TF IDF means the word is less important, since it might
be really common (high term frequency), but be really common
(lower IDF).
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Putting it together, tf-idf
We can calculate TF IDF using bind_tf_idf()
book_words_counts <- book_words %>%
      anti_join(stopwords_smart) %>% 
      bind_tf_idf(term = word, document = book, n = n)

book_words_counts
## # A tibble: 64,582 x 6
##    book                 word         n     tf   idf tf_idf
##    <fct>                <chr>    <int>  <dbl> <dbl>  <dbl>
##  1 Order of the Phoenix harry     3730 0.0352     0      0
##  2 Goblet of Fire       harry     2936 0.0369     0      0
##  3 Deathly Hallows      harry     2770 0.0345     0      0
##  4 Half-Blood Prince    harry     2581 0.0374     0      0
##  5 Prisoner of Azkaban  harry     1824 0.0408     0      0
##  6 Chamber of Secrets   harry     1503 0.0409     0      0
##  7 Order of the Phoenix hermione  1220 0.0115     0      0
##  8 Philosopher's Stone  harry     1213 0.0385     0      0
##  9 Order of the Phoenix ron       1189 0.0112     0      0
## 10 Deathly Hallows      hermione  1077 0.0134     0      0 21/57



What words were important to the books?
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Your Turn
Explore uncommon / important words in Jane Austen's books!

Complete "8b-jane-austen-tf-idf.Rmd"
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Sentiment analysis
Sentiment analysis tags words or phrases with an emotion, and
summarises these, often as the positive or negative state, over a
body of text.
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Sentiment analysis: examples
Examining effect of emotional state in twitter posts
Determining public reactions to government policy, or new product
releases
Trying to make money in the stock market by modeling social media
posts on listed companies
Evaluating product reviews on Amazon, restaurants on zomato, or
travel options on TripAdvisor
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Lexicons
The tidytext package has a lexicon of sentiments, based on four
major sources: AFINN, bing, Loughran, nrc
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http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm


emotion
What emotion do these words elicit in you?

summer
hot chips
hug
lose
stolen
smile
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Different sources of sentiment
The nrc lexicon categorizes words in a binary fashion ("yes"/"no")
into categories of positive, negative, anger, anticipation, disgust, fear,
joy, sadness, surprise, and trust.

The bing lexicon categorizes words in a binary fashion into positive
and negative categories.

The AFINN lexicon assigns words with a score that runs between -5
and 5, with negative scores indicating negative sentiment and
positive scores indicating positive sentiment.
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Different sources of sentiment
get_sentiments("afinn")
## # A tibble: 2,477 x 2
##    word       value
##    <chr>      <dbl>
##  1 abandon       -2
##  2 abandoned     -2
##  3 abandons      -2
##  4 abducted      -2
##  5 abduction     -2
##  6 abductions    -2
##  7 abhor         -3
##  8 abhorred      -3
##  9 abhorrent     -3
## 10 abhors        -3
## # … with 2,467 more rows
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Sentiment analysis
Once you have a bag of words, you need to join the sentiments
dictionary to the words data.

Particularly the lexicon nrc has multiple tags per word, so you may
need to use an "inner_join".

inner_join() returns all rows from x where there are matching
values in y, and all columns from x and y.
If there are multiple matches between x and y, all combination of the
matches are returned.
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Exploring sentiment in Harry Potter
book_words
## # A tibble: 67,881 x 3
##    book                 word      n
##    <fct>                <chr> <int>
##  1 Order of the Phoenix the   11740
##  2 Deathly Hallows      the   10335
##  3 Goblet of Fire       the    9305
##  4 Half-Blood Prince    the    7508
##  5 Order of the Phoenix to     6518
##  6 Order of the Phoenix and    6189
##  7 Deathly Hallows      and    5510
##  8 Order of the Phoenix of     5332
##  9 Prisoner of Azkaban  the    4990
## 10 Goblet of Fire       and    4959
## # … with 67,871 more rows
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Count joyful words in "Chamber of Secrets"
nrc_joy <- get_sentiments("nrc") %>% 
  filter(sentiment == "joy")

book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(nrc_joy) %>%
  arrange(desc(n))
## # A tibble: 205 x 4
##    book               word        n sentiment
##    <fct>              <chr>   <int> <chr>    
##  1 Chamber of Secrets good       85 joy      
##  2 Chamber of Secrets diary      64 joy      
##  3 Chamber of Secrets found      53 joy      
##  4 Chamber of Secrets smile      29 joy      
##  5 Chamber of Secrets white      25 joy      
##  6 Chamber of Secrets green      24 joy      
##  7 Chamber of Secrets feeling    21 joy      
##  8 Chamber of Secrets kind       18 joy      
##  9 Chamber of Secrets magical    18 joy      
## 10 Chamber of Secrets pleased    18 joy      32/57



Count joyful words in "Chamber of Secrets"
## # A tibble: 6 x 4
##   book               word      n sentiment
##   <fct>              <chr> <int> <chr>    
## 1 Chamber of Secrets good     85 joy      
## 2 Chamber of Secrets diary    64 joy      
## 3 Chamber of Secrets found    53 joy      
## 4 Chamber of Secrets smile    29 joy      
## 5 Chamber of Secrets white    25 joy      
## 6 Chamber of Secrets green    24 joy

"Good" is the most common joyful word, followed by "diary", "found",
and "smile".
These make sense ... except for "diary", and "found",
and ... "white" and "green" ?

33/57



Your turn: go to
rstudio.cloud

Go to "8b-jane-austen-sentiment.Rmd"
What are the most common "anger" words used in Emma?
What are the most common "surprise" words used in Emma?
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Comparing lexicons
All of the lexicons have a measure of positive or negative.
We can tag the words in Emma by each lexicon, and see if they
agree.

nrc_pn <- get_sentiments("nrc") %>% 
  filter(sentiment %in% c("positive", 
                          "negative"))

secrets_nrc <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(nrc_pn)

secrets_bing <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(get_sentiments("bing")) 

secrets_afinn <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(get_sentiments("afinn"))
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Comparing lexicons
secrets_nrc
## # A tibble: 1,291 x 4
##    book               word          n sentiment
##    <fct>              <chr>     <int> <chr>    
##  1 Chamber of Secrets harry      1503 negative 
##  2 Chamber of Secrets professor   190 positive 
##  3 Chamber of Secrets sir          88 positive 
##  4 Chamber of Secrets good         85 positive 
##  5 Chamber of Secrets diary        64 positive 
##  6 Chamber of Secrets black        61 negative 
##  7 Chamber of Secrets found        53 positive 
##  8 Chamber of Secrets small        51 negative 
##  9 Chamber of Secrets boy          49 negative 
## 10 Chamber of Secrets wizard       45 positive 
## # … with 1,281 more rows
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Comparing lexicons
secrets_afinn
## # A tibble: 768 x 4
##    book               word        n value
##    <fct>              <chr>   <int> <dbl>
##  1 Chamber of Secrets no        221    -1
##  2 Chamber of Secrets like      184     2
##  3 Chamber of Secrets good       85     3
##  4 Chamber of Secrets great      67     3
##  5 Chamber of Secrets want       66     1
##  6 Chamber of Secrets better     54     2
##  7 Chamber of Secrets hard       47    -1
##  8 Chamber of Secrets reached    43     1
##  9 Chamber of Secrets stop       42    -1
## 10 Chamber of Secrets help       40     2
## # … with 758 more rows
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Comparing lexicons
secrets_nrc %>% 
  count(sentiment, name = "n_sentiment") %>% 
  mutate(prop_total = n_sentiment / sum(n_sentiment))
## # A tibble: 2 x 3
##   sentiment n_sentiment prop_total
## * <chr>           <int>      <dbl>
## 1 negative         4524      0.609
## 2 positive         2904      0.391

secrets_bing %>% 
  count(sentiment, name = "n_sentiment") %>% 
  mutate(prop_total = n_sentiment / sum(n_sentiment))
## # A tibble: 2 x 3
##   sentiment n_sentiment prop_total
## * <chr>           <int>      <dbl>
## 1 negative         2970      0.582
## 2 positive         2133      0.418
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Comparing lexicons
secrets_afinn %>% 
  mutate(sentiment = ifelse(value > 0, 
                            "positive", 
                            "negative")) %>% 
  count(sentiment, name = "n_sentiment") %>% 
  mutate(prop_total = n_sentiment / sum(n_sentiment))
## # A tibble: 2 x 3
##   sentiment n_sentiment prop_total
## * <chr>           <int>      <dbl>
## 1 negative         2273      0.531
## 2 positive         2010      0.469
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Your turn:
Continue along with "8b-jane-austen-sentiment.Rmd"

Using your choice of lexicon (nrc, bing, or a�nn) compute the
proportion of positive words in each of Austen's books.
Which book is the most positive? negative?
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Example: Simpsons
Data from the popular animated TV series, The Simpsons, has been
made available on kaggle.

simpsons_script_lines.csv: Contains the text spoken during
each episode (including details about which character said it and
where)

simpsons_characters.csv: Contains character names and a
character id
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The Simpsons
scripts <- read_csv("data/simpsons_script_lines.csv")
chs <- read_csv("data/simpsons_characters.csv")
sc <- left_join(scripts, chs, by = c("character_id" = "id"))

sc
## # A tibble: 157,462 x 16
##       id episode_id number raw_text timestamp_in_ms speaking_line character_id
##    <dbl>      <dbl>  <dbl> <chr>              <dbl> <lgl>                <dbl>
##  1  9549         32    209 Miss Ho…          848000 TRUE                   464
##  2  9550         32    210 Lisa Si…          856000 TRUE                     9
##  3  9551         32    211 Miss Ho…          856000 TRUE                   464
##  4  9552         32    212 Lisa Si…          864000 TRUE                     9
##  5  9553         32    213 Edna Kr…          864000 TRUE                    40
##  6  9554         32    214 Martin …          877000 TRUE                    38
##  7  9555         32    215 Edna Kr…          881000 TRUE                    40
##  8  9556         32    216 Bart Si…          882000 TRUE                     8
##  9  9557         32    217 (Apartm…          889000 FALSE                   NA
## 10  9558         32    218 Lisa Si…          889000 TRUE                     9
## # … with 157,452 more rows, and 9 more variables: location_id <dbl>,
## #   raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>, 42/57



count the number of times a character speaks
sc %>% count(name, sort = TRUE)
## # A tibble: 6,143 x 2
##    name                    n
##    <chr>               <int>
##  1 Homer Simpson       29945
##  2 <NA>                19661
##  3 Marge Simpson       14192
##  4 Bart Simpson        13894
##  5 Lisa Simpson        11573
##  6 C. Montgomery Burns  3196
##  7 Moe Szyslak          2853
##  8 Seymour Skinner      2437
##  9 Ned Flanders         2139
## 10 Grampa Simpson       1952
## # … with 6,133 more rows
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missing name?
sc %>% filter(is.na(name))
## # A tibble: 19,661 x 16
##       id episode_id number raw_text timestamp_in_ms speaking_line character_id
##    <dbl>      <dbl>  <dbl> <chr>              <dbl> <lgl>                <dbl>
##  1  9557         32    217 (Apartm…          889000 FALSE                   NA
##  2  9565         32    225 (Spring…          918000 FALSE                   NA
##  3 75766        263    106 (Moe's …          497000 FALSE                   NA
##  4  9583         32    243 (Train …          960000 FALSE                   NA
##  5  9604         32    264 (Simpso…         1070000 FALSE                   NA
##  6  9655         33      0 (Simpso…           84000 FALSE                   NA
##  7  9685         33     30 (Simpso…          177000 FALSE                   NA
##  8  9686         33     31 (Simpso…          177000 FALSE                   NA
##  9  9727         33     72 (Simpso…          349000 FALSE                   NA
## 10  9729         33     74 (Simpso…          355000 FALSE                   NA
## # … with 19,651 more rows, and 9 more variables: location_id <dbl>,
## #   raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>,
## #   normalized_text <chr>, word_count <chr>, name <chr>, normalized_name <chr>,
## #   gender <chr>
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Simpsons Pre-process the text
sc %>%
  unnest_tokens(output = word, 
                input = spoken_words)
## # A tibble: 1,355,370 x 16
##       id episode_id number raw_text timestamp_in_ms speaking_line character_id
##    <dbl>      <dbl>  <dbl> <chr>              <dbl> <lgl>                <dbl>
##  1  9549         32    209 Miss Ho…          848000 TRUE                   464
##  2  9549         32    209 Miss Ho…          848000 TRUE                   464
##  3  9549         32    209 Miss Ho…          848000 TRUE                   464
##  4  9549         32    209 Miss Ho…          848000 TRUE                   464
##  5  9549         32    209 Miss Ho…          848000 TRUE                   464
##  6  9549         32    209 Miss Ho…          848000 TRUE                   464
##  7  9549         32    209 Miss Ho…          848000 TRUE                   464
##  8  9549         32    209 Miss Ho…          848000 TRUE                   464
##  9  9549         32    209 Miss Ho…          848000 TRUE                   464
## 10  9549         32    209 Miss Ho…          848000 TRUE                   464
## # … with 1,355,360 more rows, and 9 more variables: location_id <dbl>,
## #   raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
## #   word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr>
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Simpsons Pre-process the text
sc %>%
  unnest_tokens(output = word, 
                input = spoken_words) %>%
  anti_join(stop_words)
## # A tibble: 511,869 x 16
##       id episode_id number raw_text timestamp_in_ms speaking_line character_id
##    <dbl>      <dbl>  <dbl> <chr>              <dbl> <lgl>                <dbl>
##  1  9549         32    209 Miss Ho…          848000 TRUE                   464
##  2  9549         32    209 Miss Ho…          848000 TRUE                   464
##  3  9549         32    209 Miss Ho…          848000 TRUE                   464
##  4  9549         32    209 Miss Ho…          848000 TRUE                   464
##  5  9550         32    210 Lisa Si…          856000 TRUE                     9
##  6  9551         32    211 Miss Ho…          856000 TRUE                   464
##  7  9551         32    211 Miss Ho…          856000 TRUE                   464
##  8  9551         32    211 Miss Ho…          856000 TRUE                   464
##  9  9551         32    211 Miss Ho…          856000 TRUE                   464
## 10  9551         32    211 Miss Ho…          856000 TRUE                   464
## # … with 511,859 more rows, and 9 more variables: location_id <dbl>,
## #   raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
## #   word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr> 46/57



Simpsons Pre-process the text
sc %>%
  unnest_tokens(output = word, 
                input = spoken_words) %>%
  anti_join(stop_words) %>%
  count(word, sort = TRUE) %>%
  filter(!is.na(word))
## # A tibble: 41,891 x 2
##    word        n
##    <chr>   <int>
##  1 hey      4366
##  2 homer    4328
##  3 bart     3434
##  4 uh       3090
##  5 yeah     2997
##  6 simpson  2846
##  7 marge    2786
##  8 gonna    2639
##  9 dad      2521
## 10 time     2508
## # … with 41,881 more rows 47/57



Simpsons Pre-process the text
sc_top_20 <- sc %>%
  unnest_tokens(output = word, 
                input = spoken_words) %>%
  anti_join(stop_words) %>%
  count(word, sort = TRUE) %>%
  filter(!is.na(word)) %>%
  mutate(word = factor(word, 
                       levels = rev(unique(word)))) %>%
  top_n(20)
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Simpsons plot most common words
ggplot(sc_top_20,
       aes(x = word, 
           y = n)) +
  geom_col() +
  labs(x = '', 
       y = 'count', 
       title = 'Top 20 words') +
  coord_flip() + 
  theme_bw()
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Tag the words with sentiments
Using AFINN words will be tagged on a negative to positive scale of
-1 to 5.
sc_word <- sc %>%
  unnest_tokens(output = word, input = spoken_words) %>%
  anti_join(stop_words) %>%
  count(name, word) %>%
  filter(!is.na(word))

sc_word
## # A tibble: 220,838 x 3
##    name            word            n
##    <chr>           <chr>       <int>
##  1 '30s Reporter   burns           1
##  2 '30s Reporter   kinda           1
##  3 '30s Reporter   sensational     1
##  4 1-Year-Old Bart beer            1
##  5 1-Year-Old Bart daddy           5
##  6 1-Year-Old Bart fat             1
##  7 1-Year-Old Bart moustache       1 50/57



Tag the words with sentiments
sc_s <- sc_word %>% 
  inner_join(get_sentiments("afinn"), by = "word")

sc_s
## # A tibble: 26,688 x 4
##    name              word       n value
##    <chr>             <chr>  <int> <dbl>
##  1 1-Year-Old Bart   nice       1     3
##  2 10-Year-Old Homer chance     1     2
##  3 10-Year-Old Homer cool       1     1
##  4 10-Year-Old Homer die        1    -3
##  5 10-Year-Old Homer died       1    -3
##  6 10-Year-Old Homer dreams     1     1
##  7 10-Year-Old Homer happy      1     3
##  8 10-Year-Old Homer heaven     1     2
##  9 10-Year-Old Homer hell       1    -4
## 10 10-Year-Old Homer kiss       1     2
## # … with 26,678 more rows
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Examine Simpsons characters
sc_s %>% 
  group_by(name) %>% 
  summarise(m = mean(value)) %>% 
  arrange(desc(m))
## # A tibble: 3,409 x 2
##    name                    m
##    <chr>               <dbl>
##  1 2nd Sportscaster        4
##  2 4-h Judge               4
##  3 7-Year-Old Brockman     4
##  4 ALEPPO                  4
##  5 All Kids                4
##  6 Applicants              4
##  7 Australian              4
##  8 Bill James              4
##  9 Canadian Player         4
## 10 Carl Kasell             4
## # … with 3,399 more rows

52/57



Examine Simpsons characters: Focus characters.
keep <- sc %>% count(name, 
                     sort=TRUE) %>%
  filter(!is.na(name)) %>%
  filter(n > 999)

sc_s %>% 
  filter(name %in% keep$name) %>% 
  group_by(name) %>% 
  summarise(m = mean(value)) %>% 
  arrange(m)
## # A tibble: 16 x 2
##    name                        m
##    <chr>                   <dbl>
##  1 Nelson Muntz           -0.519
##  2 Grampa Simpson         -0.429
##  3 Homer Simpson          -0.428
##  4 Bart Simpson           -0.391
##  5 Chief Wiggum           -0.388
##  6 Lisa Simpson           -0.388
##  7 Marge Simpson          -0.344 53/57



Your turn: "8b-
simpsons.Rmd"
1. Bart Simpson is featured at various ages. How has the sentiment

of his words changed over his life?
2. Repeat the sentiment analysis with the NRC lexicon. What

character is the most "angry"? "joyful"?
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Extension: Explore Harry
Potter

I've included the harry potter data the code from the harry potter part
of the lecture in "8b-harry-potter.Rmd", if you want to have a play
around, I've got a few questions there.
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Further extension
Text Mining with R has an example comparing historical physics
textbooks: Discourse on Floating Bodies by Galileo Galilei, Treatise on
Light by Christiaan Huygens, Experiments with Alternate Currents of
High Potential and High Frequency by Nikola Tesla, and Relativity: The
Special and General Theory by Albert Einstein. All are available on the
Gutenberg project.
Work your way through the comparison of physics books. It is
section 3.4.
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https://www.tidytextmining.com/tfidf.html#a-corpus-of-physics-texts


Thanks
Dr. Mine Çetinkaya-Rundel
Dr. Julia Silge: https://github.com/juliasilge/tidytext-tutorial and
https://juliasilge.com/blog/animal-crossing/
Dr. Julia Silge and Dr. David Robinson:
https://www.tidytextmining.com/
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https://juliasilge.com/blog/animal-crossing/
https://www.tidytextmining.com/

